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CELESTIAL MECHANICS 

MODELS



Fronteers in Physics 

Ultimate structure of matter:

the Higgs boson and beyond 

Planetary systems in our

galaxy,  earth like  worlds,

life beyond the earth
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Large Hadron Collider 

Kepler Space Telescope 



Birkhoff normal forms for betatronic motion 

Models in celestial mechanics

A planet in the solar  system and of a proton  in a ring   have dynamical

analogies  and  comparable stability  times.

The 3 body problem:  sun, Jupiter with m1>m2 on circular orbits and a 

satellite  with m3  0. Equilibrium  at vertices of an equilateral triangle.
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Scaling coordinates  and time (r12=1, T=2p)  the  Hamiltonian  in corotating
system where V   is  the gravitational potential vx=px+y vy=py-x . 

H= ½  (px
2+py

2) + ypx-xpy + V(x,y)                          

Normal form  near  L4 where  X=Y=0   and   Jx= ½ (X2+Px
2) Jy = ½ (Y2+Py

2)

H= w1 Jx + w2 Jy +  H3 (Jx, Jy) + . . . .+  RN w1 w2 <0

H  has a saddle at L4   no Lyapunov stability !!

Birkhoff normal forms for betatronic motion 



Error plots.   Poincaré section y=yc vy>0    H=Hc+10-5      Hc ~1.5
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The Hénon-Heiles model.

Motion of a star in an elliptical galaxy

H= T+ V =½ (px
2+py

2) + ½ (x2+y2)  -x3/3 +xy2

V=0  has a minimum at   x=y=0 and three saddle points at  the vertices of  an 
equilateral triangle     where V=1/6

stability     H<1/6              boundary      H=1/6
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Isolines of H : innerst curve  H=1/6 stability boundary   
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Error  plots   Poincaré section  y=0  py>0    H=E ,  boundary H(x,px,0,0)=E

Plots in x,px plane for y0, py0 fixed,  boundary   H(x,px,y0,py0)=1/6     tmax=20T
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Tools for dynamic analysis

Normal forms.  Hamiltonian invariant under  a    symmetry group

up  to a remainder.     Basically an analytic tool.    

Frequency map error.  The  FFT of a  quasi periodic signal n=2m

gives tunes n=(n1, n2) .    Error e(n) =   || n(n) - n(n/2) || 

Lyapunov error . Induced by an initial displacement

Reversibility error. Induced by  noise or  round-off  
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BEAM DYNAMICS  

MODELS



Beam dynamics models: betatronic motion  

Unlikely the Kepler problem  the circular motion of a charge under a uniform

magnetic field B is not stable (drift along B).    

H= ½(px
2+py

2)  + ½         +  V(x,y,s)               s=v0t       px=dx/ds

Multipoles  contribution 

V= - 1/2 K1 (s) (x
2 -y2) - 1/6  K2(s) (x

3 - 3xy2) + …

Explicit map for thin multipoles   Km with  m ≥ 3
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Linear lattice    M(x)= L x  conjugated to a rotation 

L= W  R(w) W -1 W =                                                     = Wx
-1 

Courant-Sneider coordinates x’, p’x Change of section from  sk-1 to sk

Lk = Ak Lk-1 Ak
-1    Lk=L(sk)

Exact recurrence for  bk=b(sk),   

ak=a(sk) and phase advance
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The 2D Hénon map 

One turn map for   linear lattice  with a thin sextupole in scaled coordinates 

X = ½ bx
3/2 k2 W-1 x for a flat beam

=  R(w)                                                
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n=0.21    orbits normalized REM                                     Lyapunov error N=200                                                                                                  



The 4D Hénon map 

One turn map for a linear lattice with a thin sextupole in scaled coordinates

=                                                                    b= 

=  R(w)  
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BIRKHOFF NORMAL FORMS
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The one turn (superperiod) map M  for thin multipoles is a polynominal which
can be truncated to order N. In Courant-Sneider coordinates

MN(x)= R(w) (x + P2(x) + .. +PN(x) )      M(x)=MN(x) + O(|x|N+1)  

A  nonlinear symplectic tranformation x= F (X)  changes M(x) into

a new   map U(X)   which is invariant under the group generated by   R(w) 

M(x)=  F o U o F -1 (x) U(RX)=RU(X)

U(X) =  R exp(DH) X                       H(RX)=H(X)

F(X) = exp ( DG ) X

H is the interpolating Hamiltonian,  F a symplectic coordinates change
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If w is non  resonant (n=w/2p irrational)   R(w)  generates a continuous group

of rotations J= ½(Px
2+X2) is   the invariant.

If w=wR is resonant or quasi  resonant w=wR+e (nR=m/q e<<wR)             

R(wR) generates a discrete group of rotations and

H(J,q) =  hk (J)  cos(k q q + ak)

is invariant under  the group.  The level lines of H exhibit a  chain of q   islands
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Orbits  for v=0.21 in x,px plane and quasi resonanant
normal   form (q=5) in  the X,PX plane 



Nekhoroshev stability estimates and analyticity

The series  defining  the normal forms are divergent due to singularities 

associated to resonances. Conjugation with normal form up to a remainder

M = FN o (UN+EN) o FN
-1             UN = R exp(D     ) 

For a 2D where r=(X2+Px
2)1/2 =(2J)1/2 estimate 

|EN-1| <A  (r/rN)
N                  r<rN = 1/(CN)

Minimum achieved for  N=N*=(e C r)-1 and  r/rN*
= e-1 . In a disc  of radius r 

|EN*
| <A exp(-N* )=exp(-r*/r)        r*=(eC)-1   

Orbits starting in a disc   r/2 remain in disc of  radius r  for  n|EN* | <r/2

n <  ½ Ar exp (r*/r)
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Singularities of normalizing transformations 

The  Birkhoff series diverge due to an accumulation at the origin of the

complex  r=2J plane  of singularities associated to the resonances.

If w=2p p/q +e for  e  0 the conjugation function F behaves as

a geometric series. F has a pole at r=rq where  W= dH/dJ is resonant.  

W=w+ r W2 = 2p p/q  rq =- e/W2

In the generic case varying r the  frequency  crosses infinitely many

resonances. The leading ones correspond

to the continued fraction expansion pj/qj

of the tune n and  are located approximately

at rj=-ej/W2   where   ej = w - 2p pj / qj

A rigorous analysis confirms this picture. 

If rj>0  we have a true resonance (chain

of islands).  The resonance is virtual if rj<0

Birkhoff normal forms and betatronic motion
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DYNAMIC APERTURE  



Work point.  From H= wxJx+wyJy+ ½(h11 Jx
2+2h12 JxJy+h22Jy

2)    to any

resonance kxWx+kyWy= 2p m corresponds a line   axJx+ayJy=b  in action space
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Tune plot

|kx|+ky|≤5

Resonance
lines action
space

nx=1/5

ny=1/4

Tune plot

magnif.

Resonance
lines action
space

nx=0.21
ny=0.19



Short  term  dynamic aperture of 2D Hénon map 

Boundary of stability domain of  H for unstable resonances.

Resonance 0:  as  w  0 interpolating Hamiltonian    H = ½ w (P2+X2) - X3/3  

Scaling   X=wx, P= w p and  H=w3 h boundary    h=1/6

h - =          - (1-x)2 (1+2x) =0

Resonance 1/3: as   e=w-2p/3 0  interpolating Hamiltonian   

H= e J- 4 J3/2 cos(3q)

Birkhoff normal forms and betatronic motion

n 0  n - 1/3  0

Dynamic aperture
of   Henon map 
from resonant  
normal forms
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At the critical  saddle points  of h = 4/27 After a scaling with e 

Short  term  dynamic aperture of 4D Hénon map

For w1=w2=w  0 after scaling X= w x, …, Py=w py and   H= w3 h

where h   is  Hénon-Heiles hamiltoian

h - = + (1+2x ) ( 3y2-(1-x)2) = 0

stability region  h<1/6        boundary  h=1/6

Birkhoff normal forms and betatronic motion
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Dynamic aperture and  REM error plots  for   nx =ny =0.01  Iterations n=5000  

Plots in x,px y, py and x, y planes. Coordinates   scaled by   w=2 p n x
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LYAPUNOV  AND NOISE 

ERRORS
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Errors due do a small displacement or small noise  allow  stability assessments

Lyapunov error LE

Small initial displacement:  let iterates  of  x0 and x0 + e h ||h ||=1  be  xn and 
xn + e hn +O(e2)   Normalized  Lyapunov error 

eL(n,h) =  ||hn ||                   hn= DM(xn-1) hn-1

or  

eL(n,h) = || An h || An=DMn(x0) 

DM  denotes the tangent map. To have a result independent from the vector h
we sum over the errors for  any orthonormal basis obtaining

eL(n) = ( Tr(An
T An) )

1/2
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Forward error  FE

Noise of vanishingly small amplitude:  xn a  random vector <xn xm
T> = I d nm  

xe,n = M(xe,n-1 ) + e xn = x n + e Xn +O(e2)

Global stochastic perturbation

Xn =      Lim 

non homogeneous recurrence 

Xn = DM(xn-1) Xn-1 + x n X0= 0  

The normalized  forward error is defined   by 

eF(n)= <Xn Xn >1/2 =       Tr( Bk(n) BT
k(n) )              Bk(n)= DM k(xn- k)

Notice  e2
F (n)  is the trace of covariance matrix  < Xn Xn

T >

Birkhoff normal forms and betatronic motion
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Reversibility error RE

with respect to the initial condition after  n iterations forward  and backwards  
with noise.  Let  x e, -m, n be  the error after n iterations with M and m with M-1

xe,-m,n = M-1(xe,-m+1,n ) + e x –m  = x n-m + e X -m, n +O(e2)

Global stochastic process 

Xn
R = lim =   Xn +  DM-k (xk) x –(n-k)

Error is defined by 

eR(n)= <Xn
R Xn

R>1/2 =  Tr ( Ck(n)Ck
T(n) )  +  Tr ( AI k(n) AIk

T(n) )   

where  AIk=DM-k(xk) and   Ck= AInBk

Birkhoff normal forms    and betatronic motion
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Linear maps

Errors  asymptotics elementary for linear maps  DM(x) = L x   

eL(n)=    Tr( (Ln)T Ln)                eF(n)=      eL
2 (k)

elliptic fixed point 

e(n) ~ 1       for LE       e(n) ~ n 1/2 for FE,  RE

parabolic f. p.  

e(n) ~ n for LE         e(n) ~ n 3/2 for FE,  RE

hyperbolic f. p.

e(n) ~ e ln for LE,  FE,  RE 
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Power law growth and oscillations 

Rotation:   

L=R(w)                  eL(n)=√2              eF(n) =(2n) 1/2 

L = F R(w) F –1  eL(n)= (A - (A-2) cos(2nw) )1/2
A ≥ 2      eL (n)   oscillates

F

Integrable map  in normal form    M(x)= R(W(||x||2/2) x  

eL
2(n) =  2 + ( W’  ||x||2 )2 n2         

eF(n) ~ n3/2 eR(n)= eF(2n)

Integrable map not in normal form  M= F R(W) F -1 power law   error 
growth   with oscillations.

.  
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Averaging on oscillations 

Local  error growth rate given by 

De(n)=                      nR De(n)=                                      nN

D na= a D  eln = l n                      nR. 

To damp oscillations  of  De(n)  double  average was proposed 

Y(n) = 2 <<D e >>(n)

Y(n) is  the mean exponential growrh factor of nearby orbits (MEGNO), 
Cincotta et al (2001)
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In the next slides we compare the  errors for the 2D Hénon map

LE   normalized Lyapunov error eL(n) . The error eL(n,h)  is

avoided since h introduces a bias. 

FE and RE The exact formulae involve the tangent map

REM reversibility error (method)  due to round off.

The computation of REM requires just  n iterates of the map followed

by  n iterates of the inverse map.  One can avoid the tangent map

in computing LE choosing e=10-14 and  two orthonormal vectors h

Birkhoff normal forms and betatronic motion 



Power law   growth of e(n)  for Hénon map

Birkhoff normal forms and betatronic motion
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Integrable map. Near a  stable resonance    n=m/q +e/2p with q>4 the

resonant normal form gives a good approximation up to the dynamic aperture.

The  errors growth follow a power law eL(n) ~  n |W’(J)| J. Near the separatrix

W(J) ~ 1/ log (Js-J) and  W’ ~ (Js-J)
-1 still a power law

Tq(x) Tchebychef

Birkhoff normal forms and betatronic motion

lo
g

1
0

e
L

Y

Orbits of H  near  1/5 resonance               Lyapunov error eL (n)           MEGNO average   YL (n)
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For the Hénon map  the boundary of a chain of islands is a  chaotic layer, 
where the errors growth is exponential.  Plots for e(n), Y(n)   when n=0.21
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Normalized REM error color plots for   n= √2 -1    N=100
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Comparison of frequency map error and REM 
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Frequency error and REM:   4D Hénon map tunes n1=0.21   n2=0.25       

x, px plane
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CONCLUSIONS
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Beam and celestial dynamics  share the same tools

The Birkhoff normal forms  describe the non linear betatron motion 

Resonance induced singularities  make the series asymptotic

Applications:  tune diagrams,  dynamic aperture, slow extraction

The  Lyapunov and noise induced errors provide stability portraits   

The  round off reversibility error  gives comparable results

The error  analysis applies in absence of  a first integrals H

Birkhoff normal forms and betatronic motion
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